

STRATEGIC HIGHWAY RESEARCH PROGRAM

Accelerating solutions for highway safety, renewal, reliability, and capacity

Regional Operations Forum Performance Measurement

TRANSPORTATION RESEARCH BOARD OF THE NATIONAL ACADEMIES

Howdy!

- What is the most important use for performance measures?
- Which is more important?
 - What you say?

Or

• What they hear?

Or

What they do after they hear you?

What We're Talking About

- What gets measured gets done....
- ...but also, You get what you measure.
- Why is performance measurement important? (funding, program management, improve practices and operations, manage staff)
- Performance measure process
 - Identify key elements connect vision and goals to the measures and data.
- Congestion, mobility and safety
- Examples of successful applications

Where We're Going Today

- Your state DOT will construct a set of operations performance measures for the multi-state corridor. You are the team to develop a set of performance measures, the supporting analytical and data tools, and a reporting scheme.
- Create a mock-up of a two-page summary report that could be published every quarter and an additional page that summarizes the other important information – sources, data needs, partners, etc.

Credits

- Agencies DOTs in Washington State, Missouri, California, Georgia, Texas
- FHWA
- Rich Taylor (FHWA), Rich Margiotta (CamSys), Mark Hallenbeck (UWash), Daniela Bremmer (WSDOT), Mara Campbell (MODOT), Valentin Vulov (GRTA)

BACKGROUND ON PERFORMANCE MEASURES

6

TRANSPORTATION RESEARCH BOARD OF THE NATIONAL ACADEMIES

Why Do Performance Measurement?

- We were forced to by...
 - Legislative mandate or agency initiative
 - Funding increase proposal

But it might be just a darned good idea!

- Accountability and transparency
 - Decision makers, the public, our bosses
 - What did we produce with their money?
- Proactive public relations for the agency
 - Maintain visibility of transportation
 - Data + Analysis + Communication = Credibility

Why Do Performance Measurement? (Internal Story)

- How will we get better? How do we compare?
- Who gets paid to reduce congestion and crashes?
 Um, uh, er, anyone??
- Allows operations to compete in idea marketplace
- Similar to other data intensive programs
- Tell a good story for budget justification
 - % of pavements in Good or better
 - # of structurally deficient bridges
 - # of operating dynamic message signs...really care???

The Operations Goal: Can I Make Every Day Averagely Bad?

SHRP 2 Project C02

A Systems-Based Performance Measurement Framework for Highway Capacity Decision Making

• Framework for selecting performance measures to evaluate major transportation projects. Performance measures can be used in long-range planning, programming, environmental review, and permitting.

Transportation	Environment	Economics	Community	Cost
 Mobility Reliability Accessibility Safety 	 Ecosystems, Habitat, & Biodiversity Water Quality Wetlands Air Quality Climate Change Environmental Health 	 Economic Impact Economic Development 	 Land Use Archeological Resources Cultural Resources Social Environmental Justice 	 Cost Cost- Effectiveness

BASIC PRINCIPLES FOR OPERATIONS PERFORMANCE MEASUREMENT

TRANSPORTATION RESEARCH BOARD OF THE NATIONAL ACADEMIES

Key Principles for Performance Monitoring

Principle 1	Mobility performance measures – focus on travel time Safety measures - severity, time and location Operations Measures must include activity and event data
Principle 3	Many measures should be used
Principle 5	Vehicle volume & person volume should be used
Principle 6	Need quality of service (outcome) and activity-based (output) performance measures; efficiency and input measures play a role also.

Key Principles for Performance Monitoring

Principle 10	 Four dimensions of mobility/congestion should be tracked: Source of congestion Time of congestion Location of congestion Change in any of these – Reliability
Principle 11	Performance measurement should be communicated with graphics that resonate with a variety of technical and nontechnical audiences.
Principle 12	Continuity should be maintained in performance measures across applications and time horizons; Use the same performance measures for trend monitoring, project design, forecasting, and evaluations.

Principle 13

Data & institutional issues can't be allowed to get in the way

- Agencies will only pay for data collection if there is a clear return on investment
- Data collected for purposes other than performance measures is almost always better
- Data integration is key; models for data you don't have
 - Gather data from several sources
 - Perform quality control & assurance
 - Spatial integration with other GIS datasets
 - Human interpretation
- Even though a lot of data may be collected, integration is NOT a trivial exercise!!!

NATIONAL PERFORMANCE MEASUREMENT ACTIVITIES

TRANSPORTATION RESEARCH BOARD OF THE NATIONAL ACADEMIES

Performance Measurement Today (What the heck is going on out there?)

- Lots of data to support performance measurement
 - Quality, completeness, and coverage
 - Many data sources for the same measurement (Ex: travel time)
 - Collection/acquisition/preparation cost
- Measures
 - Are we measuring the right things?
 - Targets and benchmarks
- Interpretation
 - Understanding "outside of our control" factors
 - Allocation of funding based on performance

16

MAP-21 Staged Rulemaking

NPRM DATE	MEASURE CATEGORY	
STATUS I	✓ Serious Injuries per VMT	
Feb '14	✓ Fatalities per VMT	
	 Number of Serious Injuries 	
	✓ Number of Fatalities	
STATUS II	 Pavement Condition on the Interstates 	
May '14	 Pavement Condition on the Non- 	
	Interstate NHS	
	Bridge Condition on NHS	
STATUS III	Traffic Congestion	
July '14	 On-road mobile source emissions 	
	Freight Movement	
	Performance of Interstate System	
	Performance of Non-Interstate NHS	

17

Setting Performance Targets: Options

- Look at peer performance
- Avoid "level" targets at first use "change" instead
 - "Are things better or worse?"
 - Easiest, least controversial way to get started
- Set "hard" targets or "% change" targets that are considered to be achievable in the short term
 - Examine & extend recent trends in the performance measure
- Normalize targets to allow desirable outcomes
 - Congestion change tied to jobs or population

Congestion Management Process Example Texas DOT & Texas Legislature

http://apps.dot.state.tx.us/apps/top_100/

- Appropriations rider: 100 most congested sections (post on website every year)
- Travel delay per mile find the biggest & slowest
- What are the projects that will attack congestion for each section?
- Projects that will "get the most bang for the buck"
- Targeted funding (Not the typical "creamy peanut butter" process)
- What are economic benefits of projects?
- http://mobility.tamu.edu/mip/

Washington State DOT Project Delivery Statement

As of September 30, 2008, WSDOT delivered 167 of 391 projects funded by the 2003 and 2005 gas tax, valued at \$1.8 billion. Another 61 valued at \$2.7 billion are under construction and 43 valued at \$1.3 billion will be advertised in the next six months.

Before/After analysis of 21 sampled projects

- Savings of more than 6,400 hours of travel a day 10% improvement.
- ~\$60 million a year in economic benefits to Washington commuters and businesses.
- 49 safety projects on high risk corridors reduced all types of collisions by 6%, and injury/fatal collisions by 14%

SHRP2 L05

Incorporating Reliability Performance Measures into the Transportation Planning and Programming Processes

- High-level reference document
- Will help planning, programming, and operations managers apply the concept of travel-time reliability to balance investment in programs and projects.
- Four key areas to incorporate reliability including:
 - Developing and Tracking a Reliability Performance Measure
 - Incorporating Reliability in Policy Statements
 - Evaluating Reliability Needs and Deficiencies
 - Incorporating Reliability into Investment Decision Making
- The suite of products was pilot tested through project L38 in Washington, Minnesota, California, and Florida. Reports in editing -- results are expected soon.

Incorporating Travel Time Reliability Into Tools and Models

- SHRP2 L04 Operations and Planning Modeling Tools
 - Scenario generation is the core -- Identify events, probabilities, dependencies (e.g., inclement weather conditions tend to increase crash rates.
- SHRP2 L08 Highway Capacity Manual
 - Discussing adoption in the HCM of freeway and urban street methodologies for including reliability
- Final reports and pilot project results available

THE PATH TO A SET OF OPERATIONS PERFORMANCE MEASURES

TRANSPORTATION RESEARCH BOARD OF THE NATIONAL ACADEMIES

A Model of Congestion and Its Sources

Lessons for Plan Development: Getting Started

- Get the key people involved from the start and keep them "in the loop"
 - Includes senior-level people involved in transportation planning and programming
- Choose measures that are understandable to intended audience
 - Internal staff and bosses
 - General public & decision makers
- Get started now, use current data and IT capabilities
- Focus on known problems & estimate the rest

Lessons for Plan Development: Getting Started

- Maintain continuity with already adopted measures that have a strong cultural buy-in
- Develop consensus about what transportation outcomes are of interest before developing goals and measures
- Agree at the start the end product is a small set of measures that get used, not a single "best" measure
- Plan to evolve rather than attempting to be perfect at the start

Performance Measures: Key Considerations

- Clear link to agency goals
- Relevant to policy-makers and the public
- Intuitive or easy to understand
- Outcome influenced by agency program and policy decisions
- Communicate the core mission of the organization
- Reliable data must be available
- Manageable number of measures
- Must be capable of showing a trend

Performance Measures: Key Considerations

- When? Peak, Off-peak, Weekend
- Where? Corridors, sub-regions, metro areas, state
- *What?* Need both vehicle and person-based performance measures
- Why? ... did it happen? Requires long period of inter-agency & intra-agency cooperation
- How? Examine 3 dimensions of congestion:
 How bad? Where bad? When bad?
- Another How? Linking Have a few measures that connect across applications and time frames

28

SHRP 2 L07

Evaluation of Cost-Effectiveness of Highway Design Features

- Three separate analyses of the design treatments: operational, safety, and benefit/cost. (Traffic operation analysis work completed in SHRP 2 Project L03)
- Relationship between congestion and safety--specifically the relationship between Level of Service and crash frequency
- L07 added data on significant snowfall in peak hours in large metropolitan areas
- Benefit/cost evaluation; Delay savings, reliability improvement, and safety improvement
- L07 Products (tested and improved by pilot test)
 - Design Guide and User guide
 - Dissemination Plan
 - Spreadsheet-based analysis tool

OVERVIEW: MEASURES, DATA & PROCESSING STEPS

30

TRANSPORTATION RESEARCH BOARD OF THE NATIONAL ACADEMIES

Travel Time (Quality)

- Basis for mobility measures
- The average time required to traverse a section of roadway in a single direction
 - Urban Freeways: 2-5 miles or between interchanges
 - Signalized Roads: 0.5-2 miles or between intersections with major roads
- Measurement
 - Direct: probe vehicle-based
 - Indirect: detector-based

http://www.wsdot.wa.gov/accountability/

Total Delay (Quality)

- Total delay (measured across entire year)
 - Recurring Vehicle delays that are repeatable for the current time-of-day and day-of-week
 - Non-recurring or Event Unusual delays
- Defined as the difference between the travel time required to traverse a roadway segment and the unconstrained travel time
 - Vehicle-hours and person-hours
 - For multiple corridors delay per mile

Throughput (Quality)

- <u>Person:</u> People flow on all roadway types under both recurring and nonrecurring traffic conditions (persons/hour)
- <u>Vehicle:</u> Traffic flow on all roadway types under both recurring and nonrecurring traffic conditions (vehicles/hour)
- VMT often used as a throughput measure as well; also used as weighting factor for all measures

Combining Speed and Throughput to Make the Case for Ramp Metering

Why Is Reliability Important?

- Less tolerance for unexpected delay
- Planning for unreliable travel has costs for users – late & early arrivals!
- Economic competitiveness
- Valued service in other utilities & industries
- This is how we can "solve the problem"
- Can be treated effectively by addressing roadway "events"

Averages don't tell the full story

When Mn/DOT's ramp meters were turned off in 2000:

36

- Average travel time was 22 percent worse
- Reliability was 91 percent worse

Reliability Measures Illustrated (On the Barnes & Noble Magazine Rack)

STRATEGIC HIGHWAY RESEARCH PROGRAM

OF THE NATIONAL ACADEMIES

Reliability Effects

Logic Check - Performance Measures May Flat Out Lie To You

Period	Travel Time Index	Buffer Index	Planning Time Index
Before	2.60	31%	3.40
After	1.50	44%	2.20
%Change	-70%	+40%	-50%

Seattle, I-405 Lane Addition, Evening Peak Period

Travel Time Reliability (Quality)

- <u>Planning Time Index</u>: The additional time that must be planned for in excess of the free-flow travel time to ensure that travelers arrive on-time
- 95% of the time for travelers
- 80% of the time for agency actions
- Continuously-collected travel times
- Need to capture all the events that make travel times variable

http://www.wsdot.com/traffic/seattle/default.aspx

Safety Measures (Quality)

- Total and fatal crashes
 - Yearly consistency is important
 - Expect values to increase if monitoring is increased
- Crash rate and fatal rate
 - Per VMT
 - Time periods may be important
- Secondary crashes
 - Tie to the "incident timeline"
- Map the congestion and safety problems together
- Florida Hwy Safety Measures

http://www.flhsmv.gov/PerformanceDashboard.htm

Traffic Incident Timeline Measures (Activity & Quality)

- Roadway Clearance Time
 - The time from detection to confirmation that all lanes are available for traffic
- Incident Clearance Time
 - The time between incident awareness & when the last responder has left the scene
- Incident Duration
 - The time from notification of an incident until all evidence of the incident has been removed
- http://www.8newsnow.com/story/19778674/stateofficials-looking-at-popular-freeway-service

Other Activity and Quality Measures

- Secondary crashes Near time and location
- Work zone Capacity loss, delay, queues
- Weather Intensity and location of weather; agency and user costs
- Planned special events
- Arterial streets
- Freight corridors and crossings

Evolving Input Data Sources

- Re-use of operations data (mainly freeways)
 - Detectors declining (maintenance cost)
 - Toll tag readers
 - Travel time, event & weather information
- Volume must be estimated separately
- Private sector travel time sources growing
 - Comprehensive freeway and street data
 - Competitive RFP procurements
 - Verifiable data standards performance standards
 - FHWA and many states/MPOs have acquired

SHRP2 L02: Establishing Monitoring Programs for Travel Time Reliability

 Guidebook describing how an agency should develop and use a Travel Time Reliability Monitoring System (TTRMS). (See Figure -modules shown as box; inputs and outputs shown as circles.

• The monitoring system is not intended to be stand-alone. Rather, it is intended to mate up with an existing traffic management system.

SHOW AND TELL

SHOW US A WEBSITE AND TELL US HOW YOUR OPERATIONS DATA IS USED

TRANSPORTATION RESEARCH BOARD OF THE NATIONAL ACADEMIES

USING OPERATIONS PERFORMANCE MEASURES IN DECISION-MAKING AND COMMUNICATION

TRANSPORTATION RESEARCH BOARD OF THE NATIONAL ACADEMIES

Reporting, Accountability, Decision Making

- You have goals, you have data, you have measures what is next?
- Hint You're already behind; have a story first!
- Develop measures and meanings
- Report the results!!
 - To the public & decision makers
 - To system operators and planners
- Use them!! -- Funding decisions, operational strategies, new designs, before/after, new data

Real-Time Applications

- Tailored to local issues, tastes, public understanding and terms Whatever works!!
 - Developing "generic" guidelines -- difficult
 - Lots of examples are available
- Use the historical real-time information
 - Relatively new, but detailed data sets
- Peak period usually; off-peak important for just-in-time manufacturing
- Color coding very useful

Real-Time vs. Historical

SPEED CHART

3:56:21 PM

I-10 Katy Eastbound (Sam Houston Tlwy to Blalock)

49

Example: Incident Management

- Most common describe the services performed
 - Detection time; Response time; Clear time
 - Location and timing of incidents (by type)
 - Service patrol vehicles per mile or hours of service provided
- How justify the program?
- Using data and performance measures to change the world...

Other System and Program Evaluations

- Reporting on work zones
 - Number of work zones by type
 - Ratio of active days to inactive days
 - Delay & unreliability associated w/ work zones
- Weather
 - How often is bad weather a factor?
 - What type of bad weather?
 - How effective are agency responses to that weather?

Short-Term Reporting– Frequency of Congestion Info

- Depends upon purpose
- Likely outlined in strategic or business plan
- Possibilities include (not exclusively):
 - Real-time
 - Monthly
 - Seasonally
 - Annually

GDOT HERO Incident Response: Explaining Agency Performance

http://www.dot.state.ga.us/statistics/performance/Page

TRANSPORTATION RESEARCH BOARD OF THE NATIONAL ACADEMIES

Houston SAFEClear Rapid Towing Response

- Response time requirement held towing companies responsible (90% within 6 minutes)
- Clearance time & crash reduction used to justify City expenditures
- Reduction in secondary crashes an important component on public support
- \$5M program => \$30+M crash reduction

SHRP2 Project L17 A Framework for Improving Travel Time Reliability

There are four principal audiences whose needs must be met (non-technical info lacking)

- Policy makers (important subsets also exist)
- Practitioners (important subsets also exist)
- Researchers
- Public at large

Branding and Communication

- Effective communication is audience dependent.
- Essential to segregate "sound bites" into the target audiences where they will be the most effective. (Chapter 4 provides the key messages that have been drafted for each of these audiences).

Business Case Primer was developed following the Branding Workshop.

- A brochure targeted to the traveling public
- A fact sheet for implementers to use in spreading the word
- Two slide presentations (one for implementers and one for decision makers)

Reporting

- The big difference between audiences is not what you SAY, but HOW you say it and WHAT measures you highlight
- Use examples and summaries to illustrate the key points
- Use chart title to tell story
- Use captions to note key points
- What is the "ask"? ("what they do after they hear you")

WSDOT's Gray Notebook

- WSDOT's Strategic Approach since April 2001
 - Accountability & Transparency
 - Comprehensive Performance Analysis and Reporting
 - Adaptive and Dynamic
 Performance Measurement
- Communicating Two Simple Themes:
 - Accountability
 - Project Delivery

http://www.wsdot.wa.gov/accountability/

57

Performance Measure System Design

- How do the performance measures get reported?
- How are performance measures used by:
 - Those who have required them?
 - Staff level?
- What have been the costs of :
 - Data collection?
 - Analysis and reporting?
- Where are the overlaps? How can they be better coordinated? More efficient?

SHRP 2 Project L35

Local Methods for Modeling, Economic Evaluation, Justification and Use of the Value of Travel Time Reliability in Transportation Decision Making

Project Objectives

- 1. Select and defend a value or range of values for roadway travel time reliability
- 2. Use the VTTR in an established process to prioritize operational and capital improvements and determine if (and how) the ranking of projects change
- 3. Report the step-by-step process used to develop, justify, apply, and assess the use of a VTTR in project evaluation and decision processes.

59

Final report due in the fall of 2014

ROLLING IT ALL TOGETHER

60

TRANSPORTATION RESEARCH BOARD OF THE NATIONAL ACADEMIES

The Situation

- Your state DOT is attempting to use the basic underpinnings of the MAP-21 performance management requirements to construct a set of operations performance measures for the multi-state corridor. Your boss has asked you to be a team to develop a set of performance measures, the supporting analytical and data tools, and a reporting scheme.
- Create a mock-up of a two-page summary report that could be published every quarter and an additional page that summarizes the other important information
 - data sources, other data needs, partners, etc.

Considerations

Be sure to incorporate these elements:

- What stories are the most important?
- What do the audiences need to know?
- How do the measures connect with the likely decisions and investment options?
- What are the most important measures? (Recognizing there will be many measures).
- Where does the data come from?
- Inter-jurisdictional cooperation & coordination
 You have 40 minutes

NCHRP & SHRP2 References

- NCHRP Web Report #97: Guide to Effective Freeway
 Performance Measurement
- L02 Establishing Monitoring Programs for Travel Time Reliability
- L04 [Active] Incorporating Reliability Performance Measures in Operations and Planning Modeling Tools
- L05 Incorporating Reliability Performance Measures into Transportation Planning and Programming Processes
- L35 Local Methods for Modeling, Economic Evaluation, Justification and Use of the Value of Travel Time Reliability in Transportation Decision Making

SHRP2 References

- L07 [Active] Evaluation of Cost-Effectiveness of Highway Design Features
- L08 [Active] Incorporation of Travel Time Reliability into the Highway Capacity Manual
- L17 A Framework for Improving Travel Time Reliability
- C02 A Systems-Based Performance Measurement Framework for Highway Capacity Decision Making

Operations Performance Measures: Resources

- FHWA Operations Performance Measures Website
 - Example Programs
 - <u>http://www.ops.fhwa.dot.gov/perf_measureme</u> <u>nt/example_programs.htm</u>
- Other Sources
 - AASHTO Standing Committee on Performance Measures
 - TRB Performance Measurement Committee
 - I-95 Corridor Coalition Probe Vehicle Data Project/Performance Measures Project

65